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Abstract:- The stress distribution on elastic space due to 

nuclei of thermo elastic strain distributed uniformly on the 

circumference of a circle of radius  R situated in the place z= 

λ of the elastic semi space of Hookean model has been 

discussed by Nowacki: The Force stress and couple stress 

have been determined . The fore stress reduces to the one 

obtained by Nowacki for classical elasticity. 
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Introduction: 

 

Analysis of stress distribution in elastic space due to 

nuclei of thermoelastic strain distributed uniformly on 

the circumference of a circle of radius r situated in the 

plane Z = h of the elastic semi space of Hookean  

model has been discussed by Nowacki. 

This note is an extension of the analysis of above 

problem for micropolar elastic semi-space. Force stress 

ji and couple stress 


ji have been determined due to 

presence of nuclei of thermoelastic strain situated in 

the place Z = h inside the semi space. The force stress 

reduces to the one obtained by Nowascki for classical 

elasticity.  

 

Basic Equations: 

 

We consider a homogenous isotropic elastic material 

occupying the sami infinite region Z  O in cylindrical 

polar coordinate system (r, , Z). It has been shown by 

Nowacki [64] that is in the case when the 

macrodisplacement vector 
u


and microrotation  

w


depend only on r and z the basic equations of  

 

equilibrium of micro-polar theory of elasticity are  

 

decomposed into two mutually independent sets. Here 

we shall be concerned with the set 
u


= (ur, O, uz) and 

the rotation vector 
w


= (O, ,O): 
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ur , uz = displacement components 

 = Component of rotation vector 

λ, , ,  ,      =  elastic constants  

T (r,  z) = temperature distribution  


t = coefficient of thermal expansion. 
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To the displacement vector 
u


 (ur , O,  uz) and the rotation vector 

w


 = (O, , O) is ascribed the following state of 

force stress 

ij and couple stress 


ij 

   

rr  0  


rz    

 

ij = 0    0 

   

zr  0  


zz 

 

   0  

r  0    

 

ij = 


r  0  


z 

   0  

z  0 

 

 

 

Stress-Strain relations : 

 The relation between stress tensor ij , ij and displacement 
u


and rotation 

w


in the cylindrical coordinates 

are given by 
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 r = 
( ) ( )

r r r r

      

 

  
    ….(6.2) 

 z = ( - )  z



 , 

 z = ( - )  z



  

Following Nowacki [108], we introduce displacement potentials  ,   and rotation potential V such that 

r =   

2

rr z

  


    

z =   

1
( )r

z r r r

   


      …. (6.3) 
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Substituting ( 6.3) in (6.2) we get 

2
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The above equations are satisfied if 
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 -1) V = 0    ….(6.5) 

Where £
2
 =  

( ) )
,

4

  



 
 m    =  ,

2



 
    and V and  are related by 

 
2
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   V …. (6.6) 
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To solve (6.5) we write 

= ’ + ” ….. (6.7) 

    V  =  V’   + V” 

Where ’ and V’ are particular integrals for non-homogeneous part and ”, V” are general solutions of homogeneous 

part. Now for particular integral we have 


2 

’ = mT     … (6.8) 

and  V’ = 0 

and for general solution we have 

   
2 


2 

” = 0 

 
2 
(

2
 


2
-1)     V” = 0

 
  … (6.9) 

 

Solution of the title problem : 

 We consider nuclei of thermo elastic strain distributed uniformly on the circumference of a circle of radius r 

and situated in the plane z = h inside the elastic half space. The stress distribution ij can be considered as sum of two 

stress systems S


 and S


. The system S


 constitute stress distribution ij of infinite elastic space containing two 

nuclei of thermoelastic strains situated in the planes  z = h and  z = -h distributed uniformly along the circumferences of 

the circles, each of radius r. The second system S


 constitutes stress distribution ij corresponding to elastic semi-

space in the isothermal state. The stress ”ij is so chosen that the boundary conditions on the plane z = O. 

  zz =    0, zr = 0, z =   0 

are satisfied. 

 The thermoelastic displacement potential   ’ corresponding to ij satisfies the equation 


2
 = m (R

r
  - R) [(z-h) -  (z +  h)]  ….(6.10) 

Where r
2
   =  x

2
 + y

2
     and    (x) represents Dirac – delta function. 

 Representing the right hand side of the equations (6.10) by the Fourier Integral 

m (r-R) [ (z-h)   -    ( z + h ] 

 ( ) ( ) ( ) (o o

mR
J r J R Cosr z h Cosr z h


 



 

       

 

The solution of (6.10) is represented by the integral 
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( ) ( ) ( ) ( ) , 0o o e
o
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         …..6.12) 

The stress distribution for the system  (

_

S ) is obtained 

rr = 2 

2
2

2

'
( ) '

r




 
 

 
  

 = mR

2 ( ( ) ( )

1

1
( ) ( ) ( ) z h z h

o o
o

J R J R J r e e d
r

     



   

      
 

 

’ = 2 
21 '

( ')
r r







  = -2 

2 2

2 2

' '
( )

r z

  


 
 

 = mR 

2 ( ( ) ( )( ) ( ) "( ) z h z h

o o o
o

J R J r J r e e d     


            

General Solution for Homogeneous Equations: 

Applying Kankel transform to equation (6.9), the general solution for half space is given by 

” = 
( ) ( )z

o

A B z e Jo r d   


 
  … (6.14) 

and V” =
( ) ( )z z

e o
o

L Me J r d   


  
   …. (6.15) 

where 
2
  = 

2

2

1
 

and L,M,A, B are some functions of , to be determined by boundary conditions. 

Equations (6.4) give 

  L  = - 

2 




B.     …(6.16) 

Knowing the functions ” , ” and  V” the force stresses and couple stresses are calculated by the relations 

”rr = 2 
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Since the bounding surface  z = 0 is free from tractions, we have on z = O,     S  +  S


 = O 

Thus 

 zz = ’zz + ”zz = O 

 zr = ’zr + ”zr = O 

 z = ’z + ”z = O 

Since ’z
 

= O, we get ’z     =   O from   (6.18)3 

This gives  L = - M  



   … (6.19) 

Also, from  (6.16) we get 

   L = - L  



 =  

22
( )( )

 

 


B 

The solution of equation 
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Boundary conditions (6.18) 1, 2 yield 
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Substituting expressions for ”,  ” and V” with values of A and B in (6.20), we obtain ij and ij with the help of the 

relations   (6.17) 
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   …. (6.21) 

Stress distribution in the elastic half space is obtained by adding (6.13) and (6.21) 

Thus 
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For  = O, the micropolar couple stress vanishes and in that case =O, ao= O,  =. Thus we get from (6.22) 
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ur = ur = 0 

where P () reduces to (1-2) 
h

e


Jo (R). 1  

Results in (6,23) have been obtained in for Hookean thermo elasticity. 
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