
ISSN 2250-0987

Parita Parikh et al, UNIASCIT, Vol 2 (1), 2012, 170-172

170

Comparative Study of Association Rule

Mining Algorithms
Parita Parikh Dinesh Waghela

Computer Engineering Department Computer Engineering Department

PIET, GTU PIET, GTU

Gujarat, India Gujarat, India

Abstract - Association rule mining, one of the most

important techniques of data mining. It aims to

extract interesting correlations, frequent patterns,

associations or casual structures among sets of items

in the transaction databases or other data repositories.

Association rules are widely used in various areas

such as telecommunication networks, market and risk

management, inventory control etc. This paper

represents comparative study of association rule

mining algorithm.

Keywords–Association rule mining, Apriori,

AprioriTid, AprioriHybrid

I. INTRODUCTION

Association rule mining is to find out association

rules that satisfy the predefined minimum support

and confidence from a given database.

The problem is usually decomposed into two sub

problems. One is to find those itemsets whose

occurrences exceed a predefined threshold in the

database; those itemsets are called frequent or large

itemsets. The second problem is to generate

association rules from those large itemsets with the

constraints of minimal confidence. Support and

confidence are important measures for association

rules.

Generally, an association rules mining algorithm

contains the following steps:

i. The set of candidate k-itemsets is generated by 1-

extensions of the large (k -1) itemsets generated in

the previous iteration.

ii. Supports for the candidate k-itemsets are generated

by a pass over the database.

iii. Itemsets that do not have the minimum support

are discarded and the remaining itemsets are called

large k-itemsets.

II. APRIORI ALGORITHM

The first pass of the Apriori algorithm simply counts

item occurrences to determine the large 1-itemsets. A

subsequent pass, say pass k, consists of two phases.

First, the large itemsets Lk-1 found in the (k-1)th

pass are used to generate the candidate itemsets Ck,

then the database is scanned and the support of

candidates in Ck is counted. For fast counting, we

need to efficiently determine the candidates in Ck

that are contained in a given transaction. Where Lk

represents Set of large k-itemsets and Ck represents

Set of candidate k-itemsets.

Join Step: Ck is generated by joining Lk-1 with itself.

Prune Step: Any (k-1)-itemset that is not frequent

cannot be a subset of a frequent k-itemset

Algorithm
L1 = {large 1-itemsets};

for (k = 2; Lk-1 != Ф; k++) do begin

Ck = apriori-gen (Lk-1);

for all transactions t Є D do begin

Ct = subset (Ck , t);

for all candidates c Є Ct do

c.count++;

end

Lk = {c Є C | j c.count >= minsup}

End

Answer = Uk Lk;

The apriori-gen function takes as argument Lk-1, the

set of all large (k - 1)-itemsets. It returns a superset of

the set of all large k-itemsets. The function works as

follows. First, in the join step, we join Lk-1 with Lk-

1:

insert into Ck select p.item1, p.item2, ..., p.item k-1,

q.item k-1 from Lk-1 p, Lk-1 q where p.item1 =

q.item1, . . ., p.item k-2 = q.item k- 2,p.item k-1 <

q.item k-1;

Next, in the prune step, we delete all itemsets c Є Ck

such that some (k-1)-subset of c is not in Lk-1:

for all itemsets c Є Ck do

for all (k-1)-subsets s of c do

if (s !Є Lk-1) then

delete c from Ck;

Limitations of Apriori algorithms are:

1) Algorithm must spend a lot of time to deal with

huge candidate item sets.

2) It must repeatedly scan the transaction database to

carry out pattern matching for the candidate item sets.

ISSN 2250-0987

Parita Parikh et al, UNIASCIT, Vol 2 (1), 2012, 170-172

171

III. AprioriTID ALGORITHM

The AprioriTid algorithm also uses the apriori-gen

function to determine the candidate itemsets before

the pass begins. The interesting feature of this

algorithm is that the database D is not used for

counting support after the first pass.

Algorithm
L1 = {large 1-itemsets};

D1 = database D;

for (k = 2; Lk-1 != Ф ; k++) do begin

Ck = apriori-gen (Lk-1);

Dk = Ф;

for all entries tЄ2 Dk-1 do begin

Ct = { c Є Ck | (c - c[k]) Є t:set-of-itemsets ^ (c - c[k-

1]) Є t.set-of-itemsetsg;

for all candidates c Є Ct do

c.count++;

if (Ct != Ф) then Dk += < t.TID,Ct >;

end

Lk = {c Є Ck | c.count >= minsup}

End

Answer = Uk Lk;

IV. AprioriHybrid ALGORITHM

It is not necessary to use the same algorithm in all the

passes over data.

Figure 1 Per pass execution times of Apriori and

AprioriTid

Figure 1 shows the execution times for Apriori and

AprioriTid for different passes. In the earlier passes,

Apriori does better than AprioriTid. However,

AprioriTid beats Apriori in later passes, the reason

for which is as follows. Apriori and AprioriTid use

the same candidate generation procedure and

therefore count the same itemsets. In the later passes,

the number of candidate itemsets reduces However;

Apriori still examines every transaction in the

database. On the other hand, rather than scanning the

database, AprioriTid scans Ck for obtaining support

counts, and the size of Ck has become smaller than

the size of the database.Based on these observations

AprioriHybrid algorithm has been designed. This

uses Apriori in the initial passes and switches to

AprioriTid in the later passes.

Characteristics

Apriori

AprioriTid

Apriori

Hybrid

Data Support

Limited

Often

support

large

Very

Large

Speed in initial

phase

High

Slow

High

Speed in later

phases

Slow

High

High

Accuracy

Less

More

accurate

than

Apiori

More

accurate

than

AprioriTid

Table 1 Comparison of Apriori, AprioriTid and

AprioriHybrid

V. CONCLUSION

This paper represents comparison of three association

rule mining algorithms: Apriori, AprioriTid and

AprioriHybrid. The AprioriTid and AprioriHybrid

have been proposed to solve the problem of apriori

algorithm. From the comparison we conclude that the

AprioriHybrid is better than Apriori and AprioriTid,

because it reduced overall speed and improve the

accuracy.

REFERENCES

[1] R. Agrawal and R. Srikant. Fast algorithms for

mining association rules in large databases. Research

Report RJ 9839, IBM Almaden Research Center, San

Jose, California, June 1994.

[2] R. Agrawal, T. Imielinski, and A. Swami

Database mining: A performance perspective.IEEE

Transactions on Knowledge and Data Engineering,

5(6):914{925, December 1993. Special Issue on

Learning and Discovery in Knowledge Based

Databases.

[3] J. Han, Y. Cai, and N. Cercone. Knowledge

discovery in databases: An attribute oriented

approach. In Proc. of the VLDB Conference, pages

547{559, Vancouver, British Columbia, Canada,

1992.

ISSN 2250-0987

Parita Parikh et al, UNIASCIT, Vol 2 (1), 2012, 170-172

172

[4] M. Holsheimer and A. Siebes. Data mining: The

search for knowledge in databases. Technical Report

CS-R9406, CWI, Netherlands, 1994.

[5] M. Houtsma and A. Swami. Set-oriented mining

of association rules. Research Report RJ 9567, IBM

Almaden Research Center, San Jose, California,

October 1993.

[6] R. Krishnamurthy and T. Imielinski. Practitioner

problems in need of database research: Research

directions in knowledge discovery. SIGMOD

RECORD, 20(3):76{78, September 1991.

[7] P. Langley, H. Simon, G. Bradshaw, and J.

Zytkow. Scienti_c Discovery: Computational

Explorations of the Creative Process. MIT Press,

1987.

[8] H. Mannila and K.-J. Raiha. Dependency

inference. In Proc. of the VLDB Conference, pages

155{158, Brighton, England, 1987.

[9] H. Mannila, H. Toivonen, and A. I. Verkamo.

Efficient algorithms for discovering association rules.

In KDD-94: AAAI Workshop on Knowledge

Discovery in Databases, July 1994.

