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Abstract - Association rule mining, one of the most 

important techniques of data mining. It aims to 

extract interesting correlations, frequent patterns, 

associations or casual structures among sets of items 

in the transaction databases or other data repositories. 

Association rules are widely used in various areas 

such as telecommunication networks, market and risk 

management, inventory control etc. This paper 

represents comparative study of association rule 

mining algorithm.  
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I. INTRODUCTION 

 

Association rule mining is to find out association 

rules that satisfy the predefined minimum support 

and confidence from a given database.  

The problem is usually decomposed into two sub 

problems. One is to find those itemsets whose 

occurrences exceed a predefined threshold in the 

database; those itemsets are called frequent or large 

itemsets. The second problem is to generate 

association rules from those large itemsets with the 

constraints of minimal confidence. Support and 

confidence are important measures for association 

rules.  

Generally, an association rules mining algorithm 

contains the following steps:  

 

i. The set of candidate k-itemsets is generated by 1-

extensions of the large (k -1) itemsets generated in 

the previous iteration.  

 

ii. Supports for the candidate k-itemsets are generated 

by a pass over the database.  

 

iii. Itemsets that do not have the minimum support 

are discarded and the remaining itemsets are called 

large k-itemsets.  

 
II. APRIORI ALGORITHM 

The first pass of the Apriori algorithm simply counts 

item occurrences to determine the large 1-itemsets. A 

subsequent pass, say pass k, consists of two phases. 

First, the large itemsets Lk-1 found in the (k-1)th 

pass are used to generate the candidate itemsets Ck, 

then the database is scanned and the support of 

candidates in Ck is counted. For fast counting, we 

need to efficiently determine the candidates in Ck 

that are contained in a given transaction. Where Lk 

represents Set of large k-itemsets and Ck represents 

Set of candidate k-itemsets.  

Join Step: Ck is generated by joining Lk-1 with itself.  

Prune Step: Any (k-1)-itemset that is not frequent 

cannot be a subset of a frequent k-itemset  

 

Algorithm  
L1 = {large 1-itemsets};  

for ( k = 2; Lk-1 != Ф; k++ ) do begin  

Ck = apriori-gen (Lk-1 );  

for all transactions t Є D do begin  

Ct = subset (Ck , t);  

for all candidates c Є Ct do  

c.count++;  

end  

Lk = {c Є C | j c.count >= minsup}  

End  

Answer = Uk Lk;  

The apriori-gen function takes as argument Lk-1, the 

set of all large (k - 1)-itemsets. It returns a superset of 

the set of all large k-itemsets. The function works as 

follows. First, in the join step, we join Lk-1 with Lk-

1:  

insert into Ck select p.item1, p.item2, ..., p.item k-1, 

q.item k-1 from Lk-1 p, Lk-1 q where p.item1 = 

q.item1, . . ., p.item k-2 = q.item k- 2,p.item k-1 < 

q.item k-1;  

Next, in the prune step, we delete all itemsets c Є Ck 

such that some (k-1)-subset of c is not in Lk-1:  

for all itemsets c Є Ck do  

for all (k-1)-subsets s of c do  

if (s !Є Lk-1) then  

delete c from Ck;  

Limitations of Apriori algorithms are:  

1) Algorithm must spend a lot of time to deal with 

huge candidate item sets.  

2) It must repeatedly scan the transaction database to 

carry out pattern matching for the candidate item sets.  
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III. AprioriTID ALGORITHM 

 

The AprioriTid algorithm also uses the apriori-gen 

function to determine the candidate itemsets before 

the pass begins. The interesting feature of this 

algorithm is that the database D is not used for 

counting support after the first pass.  

Algorithm  
L1 = {large 1-itemsets};  

D1 = database D;  

for ( k = 2; Lk-1 != Ф ; k++ ) do begin  

Ck = apriori-gen (Lk-1 );  

Dk = Ф;  

for all entries tЄ2 Dk-1 do begin  

Ct = { c Є Ck | (c - c[k]) Є t:set-of-itemsets ^ (c - c[k-

1]) Є t.set-of-itemsetsg;  

for all candidates c Є Ct do  

c.count++;  

if (Ct != Ф) then Dk += < t.TID,Ct >;  

end  

Lk = {c Є Ck | c.count >= minsup}  

End  

Answer = Uk Lk;  

 
IV. AprioriHybrid ALGORITHM 

 

It is not necessary to use the same algorithm in all the 

passes over data.  

 
Figure 1 Per pass execution times of Apriori and 

AprioriTid  

Figure 1 shows the execution times for Apriori and 

AprioriTid for different passes. In the earlier passes, 

Apriori does better than AprioriTid. However, 

AprioriTid beats Apriori in later passes, the reason 

for which is as follows. Apriori and AprioriTid use 

the same candidate generation procedure and 

therefore count the same itemsets. In the later passes, 

the number of candidate itemsets reduces However; 

Apriori still examines every transaction in the 

database. On the other hand, rather than scanning the 

database, AprioriTid scans Ck for obtaining support 

counts, and the size of Ck has become smaller than 

the size of the database.Based on these observations 

AprioriHybrid algorithm has been designed. This 

uses Apriori in the initial passes and switches to 

AprioriTid in the later passes. 

 

Characteristics  
 

 

Apriori  
 

 

AprioriTid  
 

 

Apriori 

Hybrid  
 

 

Data Support  
 

 

Limited  
 

 

Often 

support 

large  
 

 

Very 

Large  
 

 

Speed in initial 

phase  
 

 

High  
 

 

Slow  
 

 

High  
 

 

Speed in later 

phases  
 

 

Slow  
 

 

High  
 

 

High  
 

 

Accuracy  
 

 

Less  
 

 

More 

accurate 

than 

Apiori  
 

 

More 

accurate 

than 

AprioriTid  
 

Table 1 Comparison of Apriori, AprioriTid and 

AprioriHybrid 

 
V. CONCLUSION 

This paper represents comparison of three association 

rule mining algorithms: Apriori, AprioriTid and 

AprioriHybrid. The AprioriTid and AprioriHybrid 

have been proposed to solve the problem of apriori 

algorithm. From the comparison we conclude that the 

AprioriHybrid is better than Apriori and AprioriTid, 

because it reduced overall speed and improve the 

accuracy.  
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